

Vol. 8 | No.4 | 422 - 425 | October - December | 2015 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2,5-DI(2H-1-BENZO/NAPHTHOPYRAN-2-ONE-4-YL) THIAZOLO [5,4-d]THIAZOLE

Uday C. Mashelkar, Jitendra B. Patil*, R. S. Kenny and N. R. Chindarkar

Organic Research Laboratory, Patkar-Varde College of Science, Goregaon (West), Mumbai 400062, India.

*E-mail: drjbpatil74@gmail.com

ABSTRACT

The titled 2,5-Di(2H-1-benzo/naphthopyran-2-one-4-yl)thiazolo[5,4-d]thiazole have been synthesized from formylcoumarins and rubeanic acid. Compounds characterized on the basis of IR, ¹H NMR and mass spectrometric data. Some of the compounds evaluated for antimicrobial activity against *E. Coli* and *S. Typhi*.

Keywords: Rubeanic acid, thiazolo[5,4-d]thiazoles and antimicrobial activity.

©2015 RASĀYAN. All rights reserved

INTRODUCTION

Benzothiazoles are heterocyclic compounds with multiple application and although they have been known from long ago to be biologically active. ¹⁻³ Recently, Racane et al⁴ have described the synthesis of bis-subsituted amidinobenzothiazoles as potential anti-HIV agents.

The condensation of dithio-oxamide with aromatic aldehyde was described by Ephraim.⁵ More recently, Johnson and Ketcham⁶ studied the reaction and established the structure of the resulting parent heterocycles as thiazolo[5,4-d]thiazoles. Taking the advantage of thiazole as biological active, we also have attempted to explore the possibility of generation of antimicrobial activity in 2-(2H-1-benzopyran-2-one-4-yl)thiazolo[5,4-d]thiazoles (7-12, 16-18). These compounds were synthesized from formylcoumarins⁷ and rubeanic acid depicted in Scheme-1 and elemental analysis of synthesized compounds is summarized in Table-1.

EXPERIMENTAL

Rubeanic acid was purchased from sigma aldrich chemical company. ¹H NMR spectra were recorded on a Mercury (300 MHz) spectrometer with TMS as internal standard. Mass spectra were obtained on a Micromass-Q-Tofmicro(YA-105) spectrometer. IR spectra were taken on a Bruker Vertex 80 infrared spectrophotometer. Melting points were measured with a SGW-X-4 microscopic melting point instrument and are uncorrected.

RESULTS AND DISCUSSION

Synthesis of 2,5-Di(7-methyl-2H-1-Benzopyran-2-one-4-yl)thiazolo[5,4-d]thiazole (7)

7-methylcoumarin-4-carboxaldehyde,**1** (0.94 gm, 0.005 mol) and rubeanic acid (0.69 gm, 0.0055 mol) were dissolved in 20 ml of dimethylformamide in a 50 ml round bottomed flask with condenser. The reaction was heated to reflux for 5 hours. The reaction mixture was cooled in cold water and the solid compound obtained was filtered, dried and recrystallized in ethanol, m.p. 411°k yield (49%), M+1 460, IR CM⁻¹-3074,1724, 1603,1560, 1451, 1364, 1257, 1170, 1110 and 819. ¹H-NMR (CF₃COOOD) δ - 2.82 (s, 6H), 7.55 (s, 2 H), 7.91 (2H, d, J = 9.2 Hz), 8.06 (2H, d, J = 7.6 Hz), 8.47 (s, 2H).

Synthesis of 2,5-Di(7-methoxybenzyl-2H-1-Benzopyran-2-one-4-yl)thiazolo[5,4-d] thiazole (8)

7-methoxycoumarin-4-carboxaldehyde, **2** (1.02 g, 0.005 mol) and rubeanic acid (0.69 g, 0.0055 mol) in dimethylformamide following the above protocol gave **8**, m.p. 418° k, yield (58%), IR CM⁻¹-3094, 1716,

THIAZOLES Uday C. Mashelkar et. al

1613, 1509, 1471, 1384, 1293, 1208, 1150, 1028, 989, 817 and 635. 1 H-NMR (CF₃COOD) δ- 4.39 (s, 6H), 7.37 (s, 2H), 7.50 (s, 2H), 7.53 (s, 2H), 8.65 (s, 2H).

Synthesis of 2,5-Di(7-acetyloxy-2H-1-Benzopyran-2-one-4-yl)benzo[d] thiazole (9)

7-acetyloxycoumarin-4-carboxaldehyde, **3** (1.16 g, 0.005 mol) and rubeanic acid (0.69 g, 0.0055 mol) in dimethylformamide following the above protocol gave **9**, m.p. >573°k, yield (51%), IR CM⁻¹ - 3431, 2921, 1715, 1611, 1558, 1378, 1201, 1132, 1016 and 857. 1 H-NMR (D₂SO₄) δ -2.56 (s, 6H), 7.31-7.38 (m, 6H), 8.11 (2H, d, J = 9.5 Hz).

Synthesis of 2,5-Di(7-propanoyloxy-2H-1-Benzopyran-2-one-4-yl)thiazolo[5,4-d] thiazole (10)

7-propanoyloxycoumarin-4-carboxaldehyde,**4** (1.23 g, 0.005 mol) and rubeanic acid (0.69 g, 0.0055 mol) in dimethylformide following the above protocol gave **10** , m.p. >573 °K yield (45%), IR CM⁻¹- 3045, 1771, 1720, 1611, 1378, 1266, 1142, 1140, 998 and 887 . 1 H-NMR (D₂SO₄) δ -1.70 (6H, t, J = 7.5 Hz), 2.57-3.8 (m, 4H), 7.66 (2H, d, J = 1.8 Hz), 7.69 (s, 2H), 7.77 (2H, d, J = 2.1 Hz), 8.92 (2H, d, J = 8.9 Hz).

Synthesis of 2,5-Di(7-butanoyloxy-2H-1-Benzopyran-2-one-4-yl)thiazolo[5,4-d]thiazole (11)

7-butanoyloxycoumarin-4-carboxaldehyde,**5** (1.30 g, 0.005 mol) and Rubeanic acid (0.69 gm, 0.0055 mol) in dimethylformamide following the above protocol gave **11**, m.p. >573 °K yield (51%), IR CM⁻¹-3016, 1756, 1717, 1616, 1553, 1377, 1223, 1199, 1159, 1117 and 1006^1 . ¹H-NMR (D₂SO₄) δ - 1.68 (s, 6H), 2.57-3.17 (m, 4H), 3.19 (s, 4H), 7.66 (s, 2H),7.69 (2H, d, J = 2.1 Hz), 7.77 (2H, d, J = 2.1Hz), 8.19 (2H, d, J = 8.9Hz).

Synthesis of 2,5-Di(7-benzoyloxy-2H-1-Benzopyran-2-one-4-yl)thiazolo[5,4-d]thiazole (12)

7-benzoyloxycoumarin-4-carboxaldehyde,**6** (1.47 g, 0.005 mol) and rubeanic acid (0.69 g, 0.0055 mol) in dimethylformide. following the above protocol gave **12**, m.p. >573 °K yield (49%), IR CM⁻¹- 3067, 1731, 1615, 1557, 1443, 1377, 1255, 1146, 1115, 1068, 999, 882 and 776. ¹H-NMR (D₂SO₄) δ - 6.88 (s, 2H), 6.96 (s, 2H), 7.14 (4H, d, J = 7.7 Hz), 7.44 (2H, d, J = 7.7 Hz), 7.60 (s, 2H), 7.70 (4H, d, J = 10.7 Hz), 7.75 (2H, d, J = 7.7 Hz).

Synthesis of 2,5-Di (7-methoxy-4-methyl-benzopyran-2-one-6-yl)thiazolo[5,4-d]thiazole (16)

7-methoxy-4-methyl-benzopyran-2-one-4-carboxaldehyde, **13** (1.09 g, 0.005 mol) and rubeanic acid (0.69 g, 0.0055 mol) in dimethylformamide following the above protocol gave **16**, m.p.418 $^{\circ}$ K(char), yield(48%), IR CM⁻¹- 3094, 1716, 1613, 1509, 1384, 1246, 1150, 1028, 838 and 635. 1 H-NMR (D₂SO₄) δ - 2.71 (s, 6H), 2.82 (s, 6H), 7.13 (s, 2H), 7.91 (s, 2H), 8.4 (s, 2H).

Synthesis of 2,5-Di(naphthopyran-2-one-6-yl) thiazolo[5,4-d]thiazole (17)

Naphthopyran-2-one-4-carboxaldehyde, **14** (1.12 g, 0.005 mol) and Rubeanic acid (0.69 gm, 0.0055 mol) in dimethylformide following the above protocol gave **17**, m.p.418 °K(char) yield(43%), IR CM⁻¹- 3069, 2862, 1732, 1617, 1413, 1385, 1240, 1151, 1056, 995, 885, 732 and 648 . ¹H-NMR (D₂SO₄) δ- 7.7 (s, 2H), 7.87-8.07 (m, 6H), 8.19 (2H, d, J = 8.8 Hz), 8.66 (2H, d, J = 7.7 Hz).

Synthesis of 2,5-Di(4-methyl-naphthopyran-2-one-6-yl)thiazolo[5,4-d]thiazole (18)

7-methoxy-naphthopyran-2-one-4-carboxaldehyde, **15** (1.19g, 0.005mol) and Rubeanic acid (0.69 g, 0.0055 mol) in dimethylformamide following the above protocol gave **18**, m.p.418 °K(char) yield(48%), IR CM⁻¹- 3780, 1765, 1605, 1501, 1450, 1373, 1314, 1722, 1085, 937, 874, 774 and 650. 1 H-NMR (D₂SO₄) δ -2.97 (s, 6H), 7.32 (s, 2H), 8.03-8.14 (m, 6H), 8.48 (s, 2H), 8.82 (2H, d, J = 5.9 Hz).

Antimicrobial Activity⁷

In the present study, compounds **7-12**, **16-18** have been tested for their effect on the growth of microbial cultures. The test compounds have been subjected in *In vitro* screening against *S.Typhi* and *E.Coli* using tube dilution technique.

Meuller Hinton broth was used as a culture medium. Sterilized medium was dispensed in each borosilicate glass tube (150+20mm). The drug solution was added in order to attend final drug concentration as 200, 400, 600 and 800 μ g/ml.etc. Innoculam of standard suspention (0.1 ml of the test organism strain which contains 10^6 bacilli/ml) was added. The tubes were incubate at 37° C for 48 hours and then examined for the presence or absence of growth of the organism. The lowest concentration, which showed no visible growth was taken as endpoint (MIC). Compounds **7-12**, **16-18** were evaluated for their anti microbial activity by Using concentration level of 200μ g/ml to 800μ g/ml. The Minimum Inhibitory Concentration at which compound showed on growth are as follows(Table-2).

$$\begin{array}{c} R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{5} \\ R_{5} \\ R_{4} \\ R_{5} \\$$

Scheme-1

Table-1: The substituents, yields, solvent of crystallization and melting points of 2,5-Di(2H-1-benzo/naphthopyran-2-one-4-yl)thizolo[5,4-d]thiazoles 8-14, 17-18.

Compds	%	M.P. °K	Elemental analysis found(calc. %)			
	yield	WI.I . IX	%C	%H	%N	%S
7	49	411(Dec.)	62.99	3.28	6.29	13.88
8	58	422(Dec.)	58.97	2.98	5.91	13.29

9	51	>573	57.34	2.77	5.21	11.87
10	47	>573	58.67	3.31	4.99	11.34
11	51	>573	59.99	3.88	4.76	10.81
12	49	>573	64.57	2.96	4.31	9.66
16	48	428(Dec.)	67.78	2.69	5.38	12.29
17	43	398(Dec.)	60.34	3.65	5.55	12.37
18	48	410(Dec.)	68.92	3.45	5.21	11.78

Table-2: The Minimum Inhibitory Concentration

Compound	Minimum inhibitory concencentration against (μg/mL)			
	S.aureus	E.Coli		
7	500	500		
8	400	500		
9	600	600		
10	500	600		
11	600	500		
12	400	500		
16	400	500		
17	500	600		
18	600	600		

CONCLUSION

Some of Synthesized compounds shows moderate activity against S.aureus and E.coli.

ACKNOWLEDGEMENTS

Authors thanks to Dr. Lahu Teli, Dr. Deepak Rane and Darpan Rane S.S.& L.S.College, Goregaon for support for analysis.

REFERENCES

- 1. W.Hunkeler, H.Mohler, L.Pier, P.Pole, E. P.Bonetti, R.Cumin, R.Schffner and W.Haefely, *Nature* **22**, 2003 (1981).
- 2. R.W. Brimblecombe, W.Q.M.Duncan, G.J.Durant, J.C.Emmett, C.R.Ganellin and M.E.Parons, *J. Int. Med. Red.*, **3**, 86 (1975).
- 3. Y.Tanigawara, N.Aoyama, T.Kita, K.Shirakawa, F.Komada, M.Kasuga and K.Okumura, *Clin. Pharmacol. Ther.*, **66**, 528 (1999).
- 4. J.G.Lombardino and E. H.Wiseman, J. Med. Chem., 17, 1182 (1974).
- 5. I.Ephraim, Rer. 24, 1026 (1891).
- 6. J. R. Johnson and R. Ketchem, J. Am. Chem. Soc., 82, 2719 (1960).
- 7. J. B. Patil, R.S.Kenny, B.U.Mashelkar, U.C.Mashelkar, *Ind. J. Chem.*, **52B**,1357(2013).

[RJC-1336/2015]